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ABSTRACT

A multiple-circuit high-pulse-repetition-frequency (PRF) pulse genera-

tor for the pumping of rare gas halide lasers is reported. With this

multiple-circuit design, high PRF can be achieved by the use of existing

low PRF thyratron switches and capacitors. A two-circuit pulse generator

was constructed, and its performance is described. By means of this pulse

generator and a blowdown-type fast transverse-flow system, high PRF laser

action in XeF was obtained; typically, 6 mJ/pulse at I kHz or 6 W average

power. High PRF laser action in N2 was observed also.
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I. INTRODUCTION

Recent advances in ultraviolet (uv) lasers, particularly the rare gas
1-8

halide lasers, indicate that the high-power and high-efficiency laser

radiation in the uv spectrum region can readily be achieved. Electric-

discharge-initiated lasers in XeF with wavelengths of 351, 353, and 349 nm

and in KrF with wavelengths of 249 and 250 nm have produced the greatest

power and efficiencies. 6. 9, 10 Pulse energies of more than 100 mJ with

overall electric efficiencies of more than I% have been obtained in XeF and

KrF lasers.9-
1 2

The significance of these electric-discharge-initiated rare gas halide

lasers is the possibility of producing high-average-power lasers by means

* of higher pulse repetition frequency (PRF) than is possible with some form

of electron-beam initiation. High-average-power uv lasers are important

for such applications as laser isotope separation and nonlinear spectroscopy.

Thus far, PRF's of 20 Hz without flow, 10, 15 200 Hz with slow longitudinal
10, 15 16

flow, and 500 Hz with fast transverse flow have been demonstrated.

Major requirements for a high PRF rare gas halide laser are a

pulse generator capable of delivering fast current rise and a large

peak current at a high PRF, and a fast-flow system to replace the gas

after every discharge pulse. Note that, for relatively slow current rise

and low peak current, thyratron switched circuits capable of more than a

few tens of kilohertz PRF have been demonstrated. However, for the

pumping of rare gas halide lasers, fast current rise, large peak currents
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and low circuit inductance are necessary. So far, low inductance pulse

generators with a grounded grid thyratron can be operated at only a few

hundred to a thousand hertz PRF because of the difficulties of thyratron
16

turn-off and recovery. Better control and higher PR1F can be obtained by

the use of a triple-grid thyratron (e.g., English Electric Valve, Inc. Model

CX1535). However, the inductance of this thyratron is rather high, and its

current rise too slow.

A pulse charging technique, with a tetrode tube used to isolate the

charging supply from the thyratron during each pulse and to control the

charging time interval and duty cycle, provides sufficient thyratron inter-

pulse recovery time. This technique has been used to achieve a few
17

kilohertz PRF. However, the tetrode and the controls are floated at high

voltage, and the average power capability of this pulse charging technique

is low.

Reported here is a novel multiple-circuit pulse generator for pumping

high PRF rare gas halide lasers. Basically, it consists of many thyratron

switched discharge circuits fed to a common transmission line. Each cir-

cuit is complete with charging resistor, storage capacitor, and thyratron

switch and is triggered, in turn, as with a Gatling gun. The major advan-

tage of this pulse generator is the use of existing low PRF thyratrons and

capacitors to achieve high PRF output pulses with fast current rise, large

peak current, and low circuit inductance.

As with the rapid gas-flow system, closed-cycle, fast-transverse-

flow gas recirculation systems have been constructed for high PRF

0
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CO2 lasers 18' 19 and rare gas lasers. 17 A simple blowdown-type burst-flow

system was constructed16 to demonstrate the principle and to study the per-

formance of the multiple-circuit pulse generator. This burst-flow system

is simple and flexible.

-3-



II. MULTIPLE-CIRCUIT PULSE GENERATOR DESIGN

High PRF laser action up to 500 Hz in XeF has been achieved by a
16

thyratron-switched, low-inductance pulse generator. Further increases

of the PRF are limited by the short charging time, the lack of thyratron

recovery and turn off. For high PRF operation, it was found that there

may not be enough reverse voltage on the thyratron to turn off the conduction

because the charging current is so high and the circuit inductance is so low.

Hence, the maximum PRF a single thyratron circuit can achieve is rather

limited.

The use of two thyratrons in a LC -inversion circuit, which provides
20

alternating polarity and twice the PRF, has been demonstrated. A

multiple-circuit pulse generator (Fig. 1) was conceived to further increase

the PRF. It consists of N independent discharge circuits fed to a common

transmission line.

For each circuit, D is a high-voltage diode to hold the high voltage.

R and L are the charging resistor and inductor, respectively, and arec c

used to limit the charging current and control the charging time. C isS

the storage capacitor, and S is a thyratron switch. Each circuit is con-

nected to a common transmission line to minimize the circuit inductance.

The equivalent line inductance and capacitance are LT and C respectively.

The other end of this transmission line is connected to the electrodes.

Since the electric-discharge pulse duration is much shorter than the time

between pulses, each circuit, more or less, discharges independently.

-5-



ITRANSMISSION I
HIGH-VOLTAGE SUPPLY I LINE I

D I LTI

S L II CI ELECTRODES
C T

1D Rc C s

Fig. 1. Equivalent circuit diagram of multiple-circuit pulse generator
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Each circuit is equivalent to a pulse discharging circuit, with a storage

capacitor (C s) and peaking capacitor (CT). Because of the finite discharge

breakdown time, the CT is charged up before the gas becomes fully conduc-

tive. Hence, high current rise and high peak current can be achieved. For

optimum operation, L T is kept to a minimum, and CT is kept to less than

Cs/2.

Furthermore, the PRF of this pulse generator is N times the PRF of

each circuit. The advantages of this multiple-circuit design are (1) the

long charging time and long pulse separation time for each circuit, which

ensures uniform energy storage and sufficient thyratron recovery, and (2)

the suitability of the low PRF thyratron and capacitors for use in achieving

high PRF operation.

0
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0
III. EXPERIMENTAL SETUP AND RESULTS

A fast-transverse-flow system and high-repetition-rate, fast-electric-

discharge circuits are needed in order to investigate high-repetition-rate

operation of rare gas halide lasers. For simplicity and flexibility, a fast-

flow system operated in a blowdown (i.e., burst) mode was constructed.

Details of the flow system are described in Ref. 16. Briefly, a high-

pressure gas supply tank, a low-pressure dump tank, and two nozzles were

used to control the pressure and velocity in the laser cavity and to ensure

steady-state operation for a period longer than 0. 1 sec (Fig. 2).

The flow becomes supersonic within the first nozzle and then goes

through a normal shock wave downstream of the nozzle. Hence, the flow

in the laser cavity is subsonic. The flow, again, becomes supersonic in

the second nozzle and expands into a large, low-pressure dump tank. The

laser cavity velocity and pressure are determined by mass conservation.

The volumes of the gas supply tank and dump tank were 40 and 310

liters, respectively. The throat areas of the first and second nozzles can

easily be varied in order to change the cavity pressure and velocity. For a

typical run, the nozzles consisted of 28 holes (0. 043-in. diam) and 24 holes

(0. 085-in. diam), respectively. For a gas supply tank filled with He at

an initial pressure of 45 psia, the cavity pressure can reach a peak of

700 Torr. The cavity pressure history, measured with an Endevco 8510-5

pressure transducer, is shown in Fig. 3, where the vertical scale is

180 Torr/div and the sweep speed is 50 msec/div. The initial delay of

9
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Fig. 2. Schematic of fast-transverse-flow system and
electrode geometry
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pressure rise was caused by the valve opening time. As predicted by theory,

the cavity pressure, after reaching a peak of 700 Torr, slowly dropped to

600 Torr in about 250 msec. Hence, a 250-msec testing time with a uniform

pressure of about 650 Torr and a flow velocity about 14 m/sec was obtained.

As shown in Fig. 2, the discharge electrodes were made of brass with

Teflon insulation. The flat region of the electrodes was 0.4 cm wide and

30 cm long with a 0. 3-cm radius round-off on four sides. The electrode
3

spacing was 1 cm, and the discharge volume was i x 0. 4 X 30 cm = 12 cm

The electrode spacing and shape can easily be varied for further optimization.

The preionization flashboard, located near the second nozzle, consisted of,

24 gaps with a 0. 050-in. gap spacing. The distance between the preionization

flashboard and the center-of-discharge region was kept at a minimum, about

0 2.5 cm. Reduction of this distance will cause arcing from electrodes to the

flashboard.

A two-circuit pulse generator was constructed to demonstrate the

principle and to investigate the performance of the multiple-circuit pulse

generator. The storage capacitor was 20 nF, and the capacitance of the

transmission line was 6 nF. Each circuit was switched by a EG&G Model

Hy3202 grounded grid thyratron. Because of the low circuit inductance,

the pulse width (FWHM) of the main discharge was about 40 nsec.

A similar circuit with a 7-nF storage capacitor and a 4-nF peaking

capacitor was used for the preionization discharge. The pulse width (FWHM)

was about 100 nsec. The time delay between preionization and main

discharge was 700 nsec. Because of the low circuit inductance and fast

0
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current rise, laser action in N2 at 337 nm was observed. The maximum

output energy was 2 mJ, about a factor of 7 lower than XeF laser output.

The pulse width was 10 nsec or half of that XeF laser output pulse.

The two circuits of the pulse generator can be triggered independently

with any preset time separation from less than 100 nsec to more than a few

msec without any premature triggering or cross-triggering. Typical

charging voltage traces (Fig. 4) indicate the independent triggering of the

two circuits separated by 1.5 ý±sec. The large high-frequency oscillation

on the traces is the result of noise pickup from the fast discharges.

The control system consisted of a gate generator with variable delay

and width, a signal generator (HP Model 214A), delay generator (Cordin

Model 437-D), two trigger generators (EG&E Model TM-27), and two

thyratrons (EG&E Model 3202). The gate signal was triggered by the

opening of the supply tank valve. This gate signal was used to control the

high-repetition-rate pulses generated by the signal generator. The high-

repetition-rate pulses were then fed to the delay generator, where two

trigger pulses with variable delay were generated for each input pulse. A

pulse distributor was used to send the trigger pulses in sequence from the

delay generator to various trigger generators. These trigger generators,

in turn, triggered the thyratrons in the preionization and main discharge

circuits.

For a typical run condition, the gate signal was delayed by 100 msec

with a gate width of 30 msec, the repetition rate was set at 1000 Hz, and the

time delay between preionization and main discharge was set at 700 nsec.

-12-



0

Fig. 4. Typical charging voltage traces of two
discharge circuits separated by 1.5 sec.
Vertical scale = 5 kV/div. Sweep
speed = 500 nsec/div.

0
-13-



A stable optical resonator was used that consisted of a 10-m radius of

curvature total reflecting mirror and a flat 50% reflecting mirror. The

mirrors were separated by a distance of 53 cm and were internally mounted.

A lean mixture, He:Xe:NF3 = 1000:15:5, was used in all of the experi-

ment reported herein. The output energy was measured by a (Molectron

Model J3-05) energy meter with fine screen attenuators. For single-shot

operation, a maximum output of 14 mJ/pulse was obtained with a charging

voltage of 16 kV in a gas pressure of 700 Torr. This single-shot output

was not optimized. The output continued to increase with increases in

pressure and charging voltage. The single-shot laser efficiency (laser

output energy divided by the sum of energies stored in the main discharge

and preionization discharge circuit) was 0. 5%. The output energy density

(energy output per unit discharge volume) was 1.2 J/liter. Both the effi-

ciency and output energy density can be increased by increasing the pressure

and charging voltage and by the optimization of various other parameters,

such as gas mixtures, 'electrode geometry, and output coupling.

The output pulse shape is shown in Fig. 5, which is a multiple exposure

of 10 pulses. The variation of output intensity was less than 5%, and the

average pulse width was about 20 nsec. The beam shape in the near field

was the same as the cross section of the discharge region (0.4 X I cm).

The beam divergence was about 3 mrad, indicating that the output beam

contained high-order transverse modes. Without flow, a maximum PRF of

22 Hz was obtained, which agrees with earlier observations in a Blumlein-
13

type fast-discharge device.

-14-
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Fig. 5. Typical laser output pulse shapes
(I0 exposures). Sweep speed =
10 nsec/div.
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With fast transverse flow, a PRF of 1000 Hz has been obtained. The

cavity pressure and velocity during the discharge were 650 Torr and

14 m/sec, respectively. A typical oscilloscope trace of the charging vol-

tages and the laser output energies is shown in Fig. 6. The upper trace

indicates the charging voltage on one of the main discharging circuits

(5 kV/div), the middle trace indicates the charging voltage on the preioni-

zation circuit (5 kV/div), and the lower trace indicates the energy meter

output (4 mJ/div). The sweep speed was I msec/div. Because there were

two circuits in the main discharge, the PRF of each circuit was one half

that of the preionization discharge circuit. The output energy of each pulse

varied somewhat as a result of nonuniform flow and a gas recirculating

region in the laser cavity. A detailed study on the flow uniformity and

acoustic waves in the cavity by means of a Zygo interferometer and pressure

transducers will be reported later. The average energy measured was

about 6 mJ/pulse at a PRF of I kHz, or an average output power of 6 W.

0
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Fig. 6. Typical charging voltage traces of main
and preionization discharges and laser
output energies at 1000 Hz PRF. Upper
trace = main-discharges, 5 kV/div. Mid-
dle trace = preionization-discharges, 5 kV/
div. Lower trace = output energies, 4 mJ/
div. Sweep speed = I msec/div.
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"IV. CONCLUSION

The reliability of a multiple-circuit pulse generator was demonstrated.

A PRF of I kHz has been demonstrated. A PRF of several kilohertz can

be achieved by the addition of more circuits to the pulse generator.

Furthermore, it is possible to shape the discharge pulse by combining

several independently triggered pulses to achieve long pulses with fast

current rise and low circuit inductance.

-19-
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